3D Object Representations

E graphics scenes conta

H representations

¢ procedural models

3D Object Representations

in

4 solid geometric objects
¢ trees, flowers, clouds, rocks, water

¢ surface « interior models

4 physically based models
® boundary representations (B-reps)

o B space-partitioning representations
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Constructive Solid Geometry CSG: Different Set Operations
m Constructive Solid Geometry (CSG)
¢ boolean set operations on 3D objects
4 union, intersection, difference operation
combining 2
objects with a
union operation,
producing a
single composite
object M —_—
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CSG Data Structure Operations with CSG Trees
Every object is N @ ® transformations
assembled from /" ' ‘\ © multiplication of all transformation matrices
simple solids with with the matrix of this transformation
set operations g N @ﬂ ® combinations
/ \ 4 generate a new node with the desired
data structure: U operator and link the operands as subtrees
binary tree @ < i to it op]
. luati \‘ A op B:
recursive evaluation
o< KR |
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Rendering of CSG Trees
= transform into B-Rep and use normal hidden
surface algorithm
or
® render directly with ray tracing
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Properties of CSG

® advantages
¢ exact representation
¢ low memory cost
¢ combinations and transformations trivial

® disadvantages
# rendering effort is high
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Ray-Casting Methods for CSG (1)

m visibility processing

Ray-Casting Methods for CSG (2)

,,,,,,,,,,,,,,,,,,,,,,,

m determining surface limits

pixel plane obj, obj, / \
y ray | 3 » | obj; obj,
il pixel AQJB D |
- plane {A,B} {C,D}
e
\.< - Operation | Result
v)\ -Z Union {A, D}
\\ Intersection {C, B}
¥ Difference {A, C} ¥
Ray-Casting Methods for CSG (3) Quadtrees
® volume determination ® hierarchical enumeration of objects
V=A; Az, V= Z\/ij ® in 2D: quadtree
4 hierarchical subdivision until a region is
pixel plane homogeneous
ray
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2gion of a 2-dim. space
Quadrant |Quadrant
0 1

0O|1)12(3

Quadrant | Quadrant data elements in the
3 2 representative quadtree node
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Quadtrees

B area with 2" by 2" pixels = quadtree with n
levels

m storage efficiency

0 1
3 b—2—
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Quadtrees

B area with 2" by 2" pixels = quadtree with n
levels

m storage efficiency

&
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Quadtrees

quadtree representation for a region containing
one foreground-color pixel on a solid

background
0 1
3 Ibi_
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Quadtree Example

suitable for representing (2D) images

3
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Octree

)10 T

regular space subdivision:
* simple (empty or uniform) = leaf node
» complex (other cases) = divide further
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m octree divides 3D cube into octants
® volume elements (voxels)
u set operations easy on octrees

m geometric transformations difficult on octrees
6
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data elements in the
representative octree node

. #




Octree Simple Example

<M,
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Operations with Octrees

= transformations

¢ very complicated except for a few special
cases,
e.g. rotation by 90°, mirroring at a subdivision
plane, scalation by 2"

E combinations
@ very simple:
if A or B homogeneous = simple rules
else combine recursively all 8 octants of A

and B
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Rendering of Octrees Properties of Octrees

® rendering algorithm:
¢ if octree node is full: draw the cube
¢ if octree node is empty: do nothing

¢ if octree node is inhomogeneous:
render the 8 octants from back to front
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® advantages
¢ every geometry can be represented
¢ combinations very simple
¢ fast rendering
4 spatial search possible

® disadvantages
4 inexact representation
¢ low image quality —
¢ restricted transformations
4 high memory cost
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Octree Example

(c) Yoshifumi Kitamura
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Other 3D Object Representations

m BSP trees

m fractal geometry methods

® shape grammars, procedural models
B particle systems

® physically based modeling

® visualization of data sets

|
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Curved Lines and Surfaces

m defined by

¢ mathematical functions (implicit,
explicit, parametrically)

¢ set of data points (surface fitting)
m tesselation to get polygon mesh
approximation
¢ triangles
# quadrilaterals ... (planar?!)
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Polygon Meshes

m efficient data structures for tiled surfaces

m triangle strip

4 n-2 triangles
for n vertices

® quadrilateral mesh
¢ (n-1)x(m-1)
quadrilaterals
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Quadric Surfaces

® defined by second degree

Quadric Surfaces: Sphere

= implicit: ‘xz +y+7° = rz‘

equations (quadrics) W parametric:  x=rcosbcosd, -m2<¢ <72
¢ sphere y=rcosdsing, -m<0<m
¢ ellipsoid z=rsinb
¢ torus :
# paraboloid parametric Z axis P=ixy 2)
+ hyperboloid coordinate position
. (r, 6, ¢) on the
sgrface _of a sphere y axis
with radius r "
R . #* — X axis
Quadric Surfaces: Ellipsoid Quadric Surfaces: Torus

= implicit:

H parametric:

-1t/2 S¢ <n/2
-n<O0<n

X=T, COS¢ COSO,
y=Tr,C0s¢sing,
z=r,sing
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i A

0] y%xis
U (N X2+ y? — Ty )* T 22 =17

X = (Tayja T I cOSP) cos®

(—n<d<m)
Y = (Tayja T T cOsP) sin®
/j\ y axis o ( _TCS(BSTE )
6 z=
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Free Form Surfaces

H can be represented by
¢ huge number of points (or polygons)

+ arbitrary shapes possible
— large memory requirements
changes cause much work
corners after scaling!
— modeling?
¢ mathematical functions
— only for some shape categories
+ marginal memory requirements
+ changes are rather simple
+ definition arbitrarily exact
* modeling!
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Nonparametric <> Parametric
x = f(t)
y=g()

axis independent

y = f(x)

axis dependent

example: y = V1-x? x=cos(t) y=sin(t)
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Properties of Curves

interpolating or approximating control points?
degree of continuity at concatenations (C, G)
oscillatory behaviour compact or overswinging?
global or local influence of control points

axis (in)dependence (does the curve change
when the coordinate system is rotated?)

multiple points possible? (for closed curves and
corners)

possible curve forms

Werner Purgathofer 32 #

Spline Representations

= spline curve
4 composite curve
4 polynomial sections, piecewise continuous
# continuity conditions

® spline surface
¢ two sets of orthogonal spline curves

Spline Curves

m spline specification with control points

= interpolating splines =——
B approximating splines x

Werner Purgathofer

Splines: Control Polygon
(also called ,Characteristic Polygon®)

polygon defining the curve

b
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B operations on splines
¢ move, insert control points

¢ spline transformation by transforming all
control points P

m convex hull property

A

A}

\
\
A\
b
(SR .
»
b

&

Wert

Spline: Continuity Conditions (1)

m parametric continuity conditions (C")
4 derivations at section joints are equal

x=x(u) y=y(u) z=zu) uy<u<uy

# CO continuity co
¢ C' continuity Ct

c? .
37 /_\ #

¢ C2 continuity
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Spline: Continuity Conditions (2)

E geometric continuity conditions (G")
¢ derivations at section joints are proportional
¢ GO (=C9) continuity
¢ G’ continuity (tangent vectors are collinear)
# G2 continuity ct c,

Py \_//\ P
P
¢

Gt C,
= tangent vector of C; at p, has
Py p, agreater magnitude than the
2P tangent vector of C, at p,
1 3

Cubic Spline Interpolation
= n+1 control points
Px = (Xka Ykazk) k = 051725---511

m cubic polynomial P,(u) between each pair of
control points

P (u) =au’ +bu? +cu+d,
k=0,1,2,...,n-1, 0<u<l

P

Py

Piss

Py
. P,
8 & pi‘
Natural Cubic Splines Hermite Interpolation (1)

® adjacent curve segments have the same first
and second derivative (C? continuity)

® solving an equation system with 4n variables
m two extra conditions required
(e.g., P"(0)=0, P,,"(1)=0 )
m global influence of control points
P.(0) = py. k=0,..,n-1
P.(D) = P k=0,..,n-1
P/(1)=P.,(0), k=0..,n—2
Pi{1) = Pes(0), k=0,..,n=2
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m tangent Dp,,, specified at each control point
® |ocal influence of control points

P(0) =py k=0,...,n1
P (1) = pyy
P (0)=Dp, - P«

P5(1) = Dpy —Plu) = (x(u), ylu), z(u)

Pi i
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Hermite Interpolation (2) Hermite Interpolation (3)
=auw+bul+cu+ <u< -
P(uw=auv’ +bu*+cu+d, 0<uc<l a1 0001 [ p 22 1 11T p
& A b, _ L 111 | Pren | -3 3-2-1 | P
pw=lwu ™ pw=[ui2u 10l ® ¢ 010/ |Dp | | 0 0 1 0 Dp,
C C d.] 13210] |Dpe, 1 0 0 0f|Dp.,
dy d,
P.(0) = py P 00 0 1][a, ay P
Pe(1) = pen Pea |_|1 1 1 1|1b b =M, | P Hermite matrix
P,(0) = Dp, Dp, 00 1 0ffc, Ci Dp,
P/(1) = Dp., Dp..] 13 2 1 0f|d, dy Dpy..
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Hermite Interpolation (4) Hermite Interpolation (5)
- P (u) = p,(2u’ = 3u’ +1) + ., (“2u’ +3u’) +
N N o +Dp, (u” ~2u” +1) + Dp (u” )
P =l’ u* ] =M, | P(w) = pyH, () pyH, (1) Dp, Hy(u) + Dpy. Hi(u)
C C Dpy
dy Ldi Dpyyy . .
B H,(u) blending functions:
p o i
k ~How o Hw ot Hw ot Hy(w
Pk(u)=[u3 u2 u 1] MH . pk+1 u; :1:: u; t
Dp, | u
LDpys “
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Bézier Curves and Surfaces

m spline approximation for points p; , i=0,..., n

P(u) = pBEZ,(u)
k=0
E Bernstein polynomials

BEZ, ,(u)= @ ut(1—u)™*
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0<u<l

Cubic Bézier Blending Functions

BEZy4(u) | BEZ,j(u) |BEZ,4(u) , BEZ;4(u)
=(1-up® « =3u(l-u? « =3u(1-u) « =

- uk s

wr [ at

T & M b M 1% 8 & @ M ! yon ou owoa 1t omououou

P(u) = (1=u)*pg + 3u(1-u)?-py + 3u¥(1-u) ‘p, + u’py

- —— -
Py N

the 4 Bézier blending
functions for cubic
curves (n=3)

Werner Purgathofer a7




2-Dim. Bézier Curves Examples

generated from 3, 4, and 5 control points

]
Py, \

P /q\ P P .\

Bézier Curves Properties

® P(u) polynomial of degree n, global influence
® P(u) interpolates start and endpoint
P(0)=p,, P(D=p, LU
m tangents at start and endpoint "
P'(0) = —np, +np, P
P'(1)=-np,, +np, e 0
m convex hull property \ 4

Y BEZ,,(u)=1
k=0 .
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Bézier Curves Design Techniques (1)

aclosed Bézier curve | a Bézier curve can be
generated by setting: made to pass closer to
first = last control point | a given coordinate
position by assigning
multiple control points
to that position

P Po=Ps P |y

Bézier Curves Design Techniques (2)

piecewise approximation curve formed with 2
Bézier sections. 0-order and 15t-order continuity
(CO, C" continuity) are attained by setting p0’ = p2

and by making p1, p2, and p1’ collinear. P

Cubic Bézier Curve Matrix Notation
P(u) = (1-u)* po + 3u(1-w)? p; + 3u%(1-u) -p, + u* pg

Po
_[3 .2 b
P(u)—[u u u 1]'MBCZ-
b2
Ps
-1 3 -3 1
3 -6 30
MBez_
3 3 00
1 00
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Bézier Surfaces Definition

® Cartesian product of two Bézier curve bundles

P(uv)= 2.3 p, BEZ, , (VBEZ, (u)

j=0 k=0

= p; grid of (m+1)x(n+1) control points




Bézier Surfaces Properties

the same properties as Bézier curves:
m global influence

E interpolates corner points
® tangents at corner points
m convex hull property
= 1st-order continuity

B-Spline Curves and Surfaces
m spline approximation for points p; , i=0,...,n
P(u)= Z PiBia(w) UpinS U SUpay
k=0

2<d<ntl

connections = B-Spline blending functions
¢ recursive Cox-deBoor formulas
' Bnuﬂﬂlr\'bn:,
L,:L, = constant .
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B-Spline Basis Functions B-Spline Functions for d=3
B (u)={ i we<u <ty
ki 0 otherwise

(uk+d—u)'Bk+1’d_1(u)
Ug+d = Uks1

(u-uy) By 4_1(v) N

Breaw) = Uged -1~ Uk

for 0 <u<n-d+2

0 for k<d global
=9 k—d+1 for d<k< §
R R, ™[ do not change 0+0+0=1 0+0+0=1
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Important Property of the B, 4 2-Dim. B-Spline Examples

m for all B-Spline basis functions the following
property holds:

n
I(Z_OB,(Yd(u)=l forall u

= every curve point is a weighted
mean of the control points
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P,
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Influence of d

m d describes, how many control points
influence every point on the curve

@ d =2linear 3 3
¢ d = 3 quadratic

¢ d =4 cubic

L

Differences B-Spline <> Bézier

m control points have
local influence —

m effort only linearly
dependent on n,
therefore splitting of
huge point sets not
necessary

m for d=n+1 you get Bézier curves!
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u further extension:
NonUniform
Rational B-Splines =
“NURBS”
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